5,750 research outputs found

    Inhomogeneous quadratic congruences

    Full text link
    We investigate the density of integer solutions to certain binary inhomogeneous quadratic congruences and use this information to detect almost primes on a singular del Pezzo surface of degree 6.Comment: 24 page

    Averages of shifted convolutions of d3(n)d_3(n)

    Get PDF
    We investigate the first and second moments of shifted convolutions of the generalised divisor function d3(n)d_3(n).Comment: 22 page

    Magnetic reconnection during collisionless, stressed, X-point collapse using Particle-in-Cell simulation

    Full text link
    Two cases of weakly and strongly stressed X-point collapse were considered. Here descriptors weakly and strongly refer to 20 % and 124 % unidirectional spatial compression of the X-point, respectively. In the weakly stressed case, the reconnection rate, defined as the out-of-plane electric field in the X-point (the magnetic null) normalised by the product of external magnetic field and Alfv\'en speeds, peaks at 0.11, with its average over 1.25 Alfv\'en times being 0.04. Electron energy distribution in the current sheet, at the high energy end of the spectrum, shows a power law distribution with the index varying in time, attaining a maximal value of -4.1 at the final simulation time step (1.25 Alfv\'en times). In the strongly stressed case, magnetic reconnection peak occurs 3.4 times faster and is more efficient. The peak reconnection rate now attains value 2.5, with the average reconnection rate over 1.25 Alfv\'en times being 0.5. The power law energy spectrum for the electrons in the current sheet attains now a steeper index of -5.5, a value close to the ones observed in the vicinity of X-type region in the Earth's magneto-tail. Within about one Alfv\'en time, 2% and 20% of the initial magnteic energy is converted into heat and accelerated particle energy in the case of weak and strong stress, respectively. In the both cases, during the peak of the reconnection, the quadruple out-of-plane magnetic field is generated, hinting possibly to the Hall regime of the reconnection. These results strongly suggest the importance of the collionless, stressed X-point collapse as a possible contributing factor to the solution of the solar coronal heating problem or more generally, as an efficient mechanism of converting magnetic energy into heat and super-thermal particle energy.Comment: Final Accepted Version (Physics of Plasmas in Press 2007

    Acoustic characterization of crack damage evolution in sandstone deformed under conventional and true triaxial loading

    Get PDF
    We thank the Associate Editor, Michelle Cooke, and the reviewers, Ze'ev Reches and Yves Guéguen, for useful comments which helped to improve the manuscript. We thank J.G. Van Munster for providing access to the true triaxial apparatus at KSEPL and for technical support during the experimental program. We thank R. Pricci for assistance with technical drawings of the apparatus. This work was partly funded by NERC award NE/N002938/1 and by a NERC Doctoral Studentship, which we gratefully acknowledge. Supporting data are included in a supporting information file; any additional data may be obtained from J.B. (e-mail: [email protected]).Peer reviewedPublisher PD

    Void-mediated formation of Sn quantum dots in a Si matrix

    Get PDF
    Atomic scale analysis of Sn quantum dots (QDs) formed during the molecular beam-epitaxy (MBE) growth of Sn_xSi_(1−x) (0.05 ⩽ x ⩽ 0.1) multilayers in a Si matrix revealed a void-mediated formation mechanism. Voids below the Si surface are induced by the lattice mismatch strain between Sn_xSi_(1−x) layers and Si, taking on their equilibrium tetrakaidecahedron shape. The diffusion of Sn atoms into these voids leads to an initial rapid coarsening of quantum dots during annealing. Since this formation process is not restricted to Sn, a method to grow QDs may be developed by controlling the formation of voids and the diffusion of materials into these voids during MBE growth

    The atomic structure of large-angle grain boundaries Σ5\Sigma 5 and Σ13\Sigma 13 in YBa2Cu3O7δ{\rm YBa_2Cu_3O_{7-\delta}} and their transport properties

    Full text link
    We present the results of a computer simulation of the atomic structures of large-angle symmetrical tilt grain boundaries (GBs) Σ5\Sigma 5 (misorientation angles \q{36.87}{^{\circ}} and \q{53.13}{^{\circ}}), Σ13\Sigma 13 (misorientation angles \q{22.62}{^{\circ}} and \q{67.38}{^{\circ}}). The critical strain level ϵcrit\epsilon_{crit} criterion (phenomenological criterion) of Chisholm and Pennycook is applied to the computer simulation data to estimate the thickness of the nonsuperconducting layer hn{\rm h_n} enveloping the grain boundaries. The hn{\rm h_n} is estimated also by a bond-valence-sum analysis. We propose that the phenomenological criterion is caused by the change of the bond lengths and valence of atoms in the GB structure on the atomic level. The macro- and micro- approaches become consistent if the ϵcrit\epsilon_{crit} is greater than in earlier papers. It is predicted that the symmetrical tilt GB Σ5\Sigma5 \theta = \q{53.13}{^{\circ}} should demonstrate a largest critical current across the boundary.Comment: 10 pages, 2 figure

    Convection forced by a descending dry layer and low-level moist convergence

    Get PDF
    This is the post-print version of the Article - Copyright @ 2009 Wiley-BlackwellA narrow line of convective showers was observed over southern England on 18 July 2005 during the Convective Storm Initiation Project (CSIP). The showers formed behind a cold front (CF), beneath two apparently descending dry layers (i.e. sloping so that they descended relative to the instruments observing them). The lowermost dry layer was associated with a tropopause fold from a depression, which formed 2 d earlier from a breaking Rossby wave, located northwest of the UK. The uppermost dry layer had fragmented from the original streamer due to rotation around the depression (This rotation was also responsible for the observations of apparent descent—ascent would otherwise be seen behind a CF). The lowermost dry layer descended over the UK and overran higher θw air beneath it, resulting in potential instability. Combined with a surface convergence line (which triggered the convection but had less impact on the convective available potential energy than the potential instability), convection was forced up to 5.5 km where the uppermost dry layer capped it. The period when convection was possible was very short, thus explaining the narrowness of the shower band. Convective Storm Initiation Project observations and model data are presented to illustrate the unique processes in this case.This work is partly funded by the Natural Environment Research Council (NERC)

    High Temperature Ferromagnetism with Giant Magnetic Moment in Transparent Co-doped SnO2-d

    Get PDF
    Occurrence of room temperature ferromagnetism is demonstrated in pulsed laser deposited thin films of Sn1-xCoxO2-d (x<0.3). Interestingly, films of Sn0.95Co0.05O2-d grown on R-plane sapphire not only exhibit ferromagnetism with a Curie temperature close to 650 K, but also a giant magnetic moment of about 7 Bohr-Magneton/Co, not yet reported in any diluted magnetic semiconductor system. The films are semiconducting and optically highly transparent.Comment: 12 pages, 4 figure
    corecore